# **Customers and Applications**

Impedance systems heat a wide variety of gases, liquids and viscous materials which are stored, pumped and processed in many different industries and applications. Impedance heating can be used in three basic ways:

**Cold Start:** Heat is applied to increase fluidity of static, viscous materials so they can be pumped. Typical materials include asphalt, molasses and heavy fuel oils.

**Maintain Temperature or Pipe Tracing:** Heat is applied to a liquid or gas flowing through a pipe to offset heat losses. Typical applications include freeze protection or maintaining the fluidity of viscous materials.

**Temperature Rise:** Heat is applied to a liquid or gas flowing through a pipe in order to raise its temperature between the inlet and outlet of the heated pipe. Typical applications include heating corrosive liquids or high temperature process air.

A partial list of customers and applications are shown below.

| CUSTOMER                                     | MATERIAL HEATED          | TEMP (°F)  | PIPE LENGTH (FT |
|----------------------------------------------|--------------------------|------------|-----------------|
| Allied Chemical Corp.                        | Coal Tar Pitch           | 450        | 131             |
| Allied Fibers Corp.                          | Superheated Steam        | 1040       | 70              |
| Aluminum Co. of America                      | Pitch                    | 170        | 1155            |
| American Hoechst Corp.                       | Polypropylene            | 400        | 22              |
| Amoco Oil Co.                                | Fuel Oil                 | 280        | 891             |
| Amoco Oil Co.                                | Zinc Chloride            | 700        | 53              |
| Arco Oil & Gas Co.                           | Crude Oil                | 150        | 15700           |
| Atlantic Richfield                           | Salt Water               | 40         | 802             |
| Barnard & Burk                               | Sulphur                  | 265        | 70              |
| Bethlehem Steel                              | #6 Fuel Oil              | 280        | 891             |
| Bouligny Co.                                 | Superheated Steam        | 845        | 34              |
| British Petroleum Alaska                     | Water                    | 40         | 611             |
| Brown & Root Inc.                            | Crude Oil                | 50         | 1270            |
|                                              |                          |            |                 |
| Catalytic Corp.                              | Liquid Pentasulfide      | 752<br>400 | 2<br>1760       |
| Celotex Corp.                                | Asphalt                  |            |                 |
| Certain Teed Corp.                           | Asphalt                  | 480        | 52              |
| Chemtex Inc.                                 | Polymer                  | 536        | 52              |
| Chevrolet Motor Div.                         | Catalyst                 | 70         | 770             |
| Colgate Palmolive Inc.                       | Sulphur                  | 300        | 165             |
| E.I. Dupont                                  | Process Gas              | 575        | 170             |
| Emery Industries                             | Stearic Acid             | 160        | 370             |
| Ethyl Corp.                                  | Powdered Catalyst        | 450        | 53              |
| Exxon Research & Engineering                 | Heavy Fuel Oil           | 950        | 552             |
| Exxon Synthetics Inc.                        | Coal Slurry              | 370        | 558             |
| Fisher Scientific Co.                        | Resin & Hardener Mix     | 194        | 40              |
| Fortifiber Corp.                             | Asphalt                  | 500        | 250             |
| Foster Wheeler Corp.                         | Paraffin                 | 60         | 1020            |
| H.K. Ferguson                                | Pitch                    | 735        | 100             |
| Hershey Foods Corp.                          | Chocolate                | 110        | 377             |
| Honeywell                                    | Air                      | 1200       | 114             |
| Inland Steel Co.                             | Fuel Oil                 | 160        | 8500            |
| Intalco Aluminum                             | Air/Tar Mixture          | 500        | 52              |
| International Paper                          |                          | 185        | 520             |
| Kaiser Aluminum Co.                          | Wax<br>Coal Pitch        | 380        | 500             |
|                                              |                          |            |                 |
| Kitchens of Sara Lee                         | Nulomoline               | 100        | 325             |
| Koppers Co.                                  | Enamel Filling           | 375        | 85              |
| ayton Engineering                            | #6 Fuel Oil              | 125        | 550             |
| VI & M Mars Co.                              | Chocolate                | 120        | 1400            |
| Medusa Cement Co.                            | #6 Fuel Oil              | 150        | 700             |
| Mobil Pipe Line Inc.                         | Wax                      | 145        | 93              |
| Vionsanto                                    | Montar                   | 752        | 230             |
| N.L. Industries                              | Magnesium Chloride       | 1300       | 95              |
| National Starch & Chemical                   | Wax                      | 210        | 300             |
| National Starch & Chemical                   | Wax/Resins               | 100        | 1400            |
| Vestlé                                       | Chocolate                | 110        | 263             |
| Pillsbury Haagen Dazs                        | Sweeteners               | 120        | 180             |
| PolyOne Elastomers & Performance Additives   | Oil                      | 180        | 350             |
| Procon, LTD.                                 | Sulphur                  | 285        | 890             |
| Rohm & Haas                                  | Process Vapor            | 1100       | 26              |
| Shell Chemical Co.                           | Process Fluid            | 500        | 41              |
| Sherwin Williams, Inc.                       | Pitch                    | 500        | 140             |
|                                              |                          |            | 1350            |
| South Carolina Electric                      | Sulphur                  | 110<br>120 | 400             |
| SPEC Process Engineering & Construction Inc. | Isocyanate               |            |                 |
| Stauffer Chemical Co.                        | Phosphorous Pentasulfide | 707        | 30              |
| Sun Oil Company                              | Sulphur                  | 290        | 485             |
| Tennessee Eastman                            | Polymers                 | 320        | 1165            |
| Trimount Bituminus                           | Asphalt                  | 325        | 425             |
| Jnion Electric Co.                           | Wax                      | 212        | 612             |
| Upjohn                                       | Isocyanate               | 120        | 476             |
| Vulcan Material                              | Caustic                  | 750        | 360             |
| Western Electric Co.                         | Thermoplastic Rubber     | 300        | 900             |
| Yabucoa Sun Oil Co.                          | Pitch                    | 400        | 2300            |

# Impedance Heating Applications

#### **Power Generating Utility**

**Application:** To maintain heavy fuel oil at 140° F and facilitate pumping from barges to storage tanks and return lines. The application required cold start recovery capabilities to heat up the fuel oil in case of station shut down. Pipe size diameters ranged from 10" to 24" with a combined pipe length of almost two miles. Impedance heating was selected because critical importance was placed upon system reliability, maintenance and operating costs.

**Design:** Seven impedance heating systems were required. To conserve heat, pipe lines, gaskets and flanges were covered with 2" of insulation and sheathed with 16 gauge aluminum.



Impedance heating used to facilitate pumping of fuel oil from barges to storage tanks at power generating utility.

### **Food Processing**

**Application:** To maintain the temperature of chocolate and sweetener at 120° F as it flows through 16 gauge, sanitary 304 stainless steel tubing lines. Impedance heating was selected because of the temperature sensitive characteristics of the material and the importance of uniform temperature control to the quality of the product. Pipe lengths for different lines varied from 128 feet to 420 feet. The sanitary environment required frequent washdown of the control panel.

**Design:** Three individual impedance heating systems were required, rated 1.5, 2 and 3 KVA. Standard onoff control with operational RTD input was selected. Stainless steel, NEMA 4X control panel enclosures with a viewing window to monitor actual process variables were supplied to meet the frequent washdown requirements.

#### **Metal Processing**

**Application:** To heat a mixture of air, water vapor and tar particles up to 400° F at a flow rate of 5,750 lbs/hr. Ten inch diameter stainless steel ducts were used in the first phase of the process where the mixture was heated up to 400° F. Carbon steel ducts were used in the second phase of the process to maintain the final temperature. Impedance

heating was the most cost effective method for this application which included one additional requirement of heating the duct work up to 500° F during a cleaning phase where residual tar on the duct walls melt, allowing it to simply flow out of the duct work.

**Design:** Three individual impedance heating systems rated 36, 171 and 176 KVA were used in this application. Full SCR controls were used for each system to provide precise temperature control. Special weld terminals were also supplied due to the high secondary transformer currents.

### **Plastic Processing**

**Application:** To control, monitor and heat to temperature within 16 hours, a 4,800 foot, 2" schedule 40, 304L stainless steel pipe containing a sludge mixture. The impedance heating control panel needed computer interface with auxiliary outputs for alarm indication.

**Design:** Six identical 11 KVA impedance heating systems were supplied for this job. The solid-state proportional control panel was capable of remote signal input and temperature indication and included ammeters, voltmeter and auxiliary control circuit source. Under actual operating conditions, the impedance heating system exceeded the application requirements by providing a recovery time of only 14 hours, which was of critical importance to the process, allowing greater production rates.

# Impedance Heating Applications

#### **Chemical Processing**


**Application:** A highly corrosive material must be heated through a 630°F temperature rise with a flow rate of 160 lbs/hr. Conventional process heating methods were too costly and could not withstand the high temperature corrosion for any reasonable period of time. Impedance heating provided the answer.

**Design:** Customer supplied, heavy wall, Inconel pipe became the heating element and transporting device in this impedance heating system. A midpoint connection system was selected to eliminate the need for electrical isolation at the pipe ends.

#### Test Equipment

**Application:** To preheat high temperature air from 800° F to 1200° F at a flow rate of 20 lbs/min. Impedance heating was selected over the more conventional direct heating methods because of the low flow rate and high outlet temperature. A low pressure drop was also a requirement of the application. The impedance heating system easily met this requirement since the pipe became the heating element, offering no obstruction to the high temperature air flowing through the pipe.

**Design:** One 75 KVA impedance heating system was used. The design was a completely packaged unit including an Incoloy pipe in a multipass configuration, transformer, control panel with full instrumentation and high temperature insulation.



Packaged impedance heating system for test equipment application. (System cabinet enclosure was removed for photography.)

#### Aerospace

**Application:** Constant 600° F air at pressures up to 3,000 psi was needed at three different locations, including two wind tunnels and one model preparation area. Distances from the air storage area to the point of use ranged from 100 ft. to 200 ft. Impedance heating was chosen as the most cost effective way of preheating the piping from the storage tank to the three use points.

**Design:** Initial heating of the air in the storage tank was performed by two 400 KW resistance heaters. Three individual 20 KVA impedance heating systems were then used to maintain the temperature of the air as it passed through the schedule 160 carbon steel piping which was selected because of its suitability for such high pressure applications. To minimize heating costs, all above ground piping was thermally insulated and some piping was buried underground with a fiberglass polyester weatherproof coating.



Impedance heating used to heat high temperature, high pressure air for aerospace application.

# Impedance Heating Applications

#### **Asphalt Processing**

**Application:** To heat carry-off piping leading from the asphalt plant to storage tanks. Impedance heating was chosen as the most cost effective way to heat and maintain the temperature of 350 tons of asphalt at 100° F.

**Design:** A conventional impedance pipeline heating system was used for the carry-off piping. The transformer and control panel were located away from the storage area for easy access.



Impedance heating used to maintain temperature of 350 tons of asphalt.

### Aircraft Manufacturing

**Application:** To heat 1200 psig compressed air flowing at 75 lbs/hr from ambient to 1200° F for purposes of testing aircraft components. Several independent test cells required the equipment to be portable. An impedance heating furnace was chosen as the most cost effective and reliable means of heating air at these elevated temperatures and pressures.

**Design:** One 23 KVA, 480V single-phase impedance heating furnace was supplied with casters to allow for relocation of the furnace to the various test cells. The design was a completely packaged system with Incoloy 800 piping, mounted in an insulated stainless steel housing, and prewired to the system transformer and control panel.



Portable impedance heating furnace for testing aircraft components.

**Application:** To heat 1800 psig compressed air flowing at 240 to 600 lbs/hr from ambient to 1200° F for purposes of testing aircraft components. The customer's existing power feed required the utilization of three-phase power.

**Design:** A single 120 KVA, 480V three-phase impedance heating system was supplied with three identical zones to accept the three-phase power supply. The design was a completely packaged system with Incoloy 800 piping, mounted in an insulated stainless steel housing, and prewired to the system transformer. The control system was supplied for remote mounting in the customer's control room.



Three-phase impedance heating furnace for testing aircraft components.